中国现代教育装备
中华人民共和国教育部主管 中国高等教育学会主办
刊号:CN11-4994/T(国内) ISSN1672-1438(国际)
中国期刊全文数据库 中文科技期刊数据库
中国核心期刊遴选数据库
首页 杂志简介 杂志目录 期刊封面 推荐阅读 顾问专家 投稿须知 投稿查询 订阅须知 广告业务
您当前的位置:中国现代教育装备 >> 首页 >> 实验室建设
高教 普教
总431期 总429期 总427期
总425期 总423期 总421期
总419期 总417期 总415期
总413期 总411期 总409期
 装备时空 更多>>
第33届北京教育装备展示会暨北京教育装备论坛胜利闭幕
 编务说明 更多>>
 实验室建设  
中空电极尖端放电微等离子体氢化物发生原子发射光谱法测定中药中的砷
来源:《中国现代教育装备》杂志 时间:2022-6-23 10:07:44
  [导读]建立了一个小型化的基于尖端放电微等离子体的氢化物发生原子发射光谱(PD-HG-AES)分析系统,其具有操作简便、灵敏度高、精密度好、搭建成本低等特点,可用于检测中药中砷(As)的含量。尖端放电微等离子体一端使用不锈钢空心针,使得氢化物发生产生的砷化氢气体通过内部扩散的方式全部引入并限制于微等离子体中,有助于提高样品引入效率和激发效率。氢化物发生能使待测氢化物与基体有效地分离,因而实现对砷的高选择性和高灵敏度的分析测定。该方法已成功用于7种中药中砷含量的准确测定,在最优化条件下,检出限(LOD)为0.3 ng mL—1;在As3+浓度为5 ng mL—1时测定了7种中药样品,其相对标准偏差(RSD)为2.7%。

  1 研究背景

  中药是我国的传统医药,是中华民族的瑰宝。随着中药产业的发展,中药的安全性问题日益受到国内外的普遍关注[1-2]。近年来,在我国中药安全性方面,中药材重金属含量超标是一个比较突出的问题[3]。中药材重金属含量超标不仅降低了中药的质量,影响了用药的安全性,而且严重影响了我国中医药在国际上的形象和声誉,制约了中药的出口,成为中药贸易的壁垒[4]。汞、砷、铅、镉等元素是目前已被报道的中药中常见的有毒有害元素[5]。在这些元素中,砷是中药中最常见和最具毒性的污染物之一。近些年,对中药中砷化物的安全性评价研究已成为毒理学、中药药理学、生物无机化学的研究热点。因此,精确测定中药中的砷具有重要意义[6]。

  目前砷的检测技术有很多种,包括原子发射光谱法(AES)、原子荧光光谱法(AFS)、原子吸收光谱法(AAS)、电感耦合等离子体质谱法(ICP-MS)、荧光和紫外可见光谱法等[7-10]。这些技术虽然具有较高的灵敏度,但仍然有局限性,如分析仪器高能耗、体积大、价格昂贵等。近年来,基于微等离子体的原子发射光谱法,由于其具有体积小、气体需求量小、功率能耗小、重量轻、制造成本低等优点,受到研究者的广泛关注[11-13]。微等离子体包括尖端放电(PD)、介质阻挡放电(DBD)、电晕放电(CD)和辉光放电(GD)等多种放电方式,将这些微等离子体搭配微型光谱仪使用,即成为一种新型的小型化便携式原子光谱分析仪器。

  本文以尖端放电微等离子体为激发源,建立了一个小型化氢化物发生原子发射光谱分析系统(简称PD-HG-AES分析系统),用于中药中砷的高灵敏分析。该方法采用氢化物发生(HG)实现样品引入,其具体过程为:当含砷样品与硼氢化钾(KBH4)发生反应时,生成砷化氢气体(AsH3),生成的AsH3通过气液分离器即可实现与基体的有效分离,通过载气引入空心电极进入尖端放电激发原子化,最后将产生的砷原子发射信号通过CCD光谱仪进行检测。PD-HG-AES分析系统利用中空电极将氢化物发生于尖端放电耦合,大大降低了光谱发射背景,提高了分析的灵敏度和选择性。

  2 中药中砷的测定

  3 讨论与结果

  4 结语

  基于微等离子体原子发射光谱法在痕量元素分析中的应用,本文建立了PD-HG-AES分析系统,用于中药中痕量砷的高灵敏分析。该方法采用空心电极进样,使得氢化物发生产生的AsH3气体完全进入放电区,保证了微等离子体中AsH3气体充分引入和激发。PD-HG-AES分析系统具有体积小、功耗低、气体消耗少、进样效率高、灵敏度高等特点,其较宽的线性范围有助于检测砷浓度差异大的中药样品。PD-HG-AES分析系统与最新的萃取技术相结合,可进一步提高分析的灵敏度,可以预见,PD-HG-AES分析系统在中药分析检测中具有较好的发展前景。

  参考文献

  [1] 叶祖光,张广平.中药安全性评价的发展、现状及其对策[J].中国实验方剂学杂志,2014,20(16):1-6.

  [2] 肖小河,肖培根,王永炎.中药科学研究的几个关键问题[J].中国中药杂志,2009,32(2):119-123.

  [3] 赵连华,杨银慧,胡一晨,等.我国中药材中重金属污染现状分析及对策研究[J].中草药,2014,45(9):1199-1266.

  [4] 章颖慧,王秀英,杨明,等.中药有害残留物限量制定原则及其影响因素[J].药物分析杂志,2015,35(3):558-567.

  [5] 孙楠,薛健.中药中重金属测定的研究进展[J].中草药,2005,36(12):1907-1909.

  [6] GYAMFI E T. Metals and metalloids in traditional medicines (Ayurvedic medicines, nutraceuticals and traditional Chinese medicines) )[J]. Environmental Science and Pollution Research, 2019(26): 15767-15778.

  [7] OKATCH H, NGWENYA B, RALETAMO K M, et al. Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in Northern Botswana [J]. Analytica Chimica Acta, 2012, 730(none):42-48.

  [8] ZHU Y Q, SHI J. Determination of trace arsenic in Chinese traditional medicine by hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis,2007(27): 2585-2587.

  [9] SHEN Y, ZHENG C B, JIANG X M, et al. Integration of hydride generation and photochemical vapor generation for multi-element analysis of traditional Chinese medicine by ICP-OES[J]. Microchemical Journal, 2015(123):164-169.

  [10] ONG E S, YONG Y L, WOO S O. Determination of arsenic in traditional Chinese medicine by microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS)[J]. Journal of AOAC International, 1999, 82(4):963-967.

  [11] YANG C, CHAN G C-Y, HE D, et al. Highly sensitive determination of arsenic and antimony based on an interrupted gas flow atmospheric pressure glow discharge excitation source[J]. Analytical Chemistry, 2019(91): 1912-1919.

  [12] YANG C, HE D, ZHU Z, et al. Battery-operated atomic emission analyzer for waterborne arsenic based on atmospheric pressure glow discharge excitation source[J]. Analytical Chemistry, 2017 (89): 3694-3701.

  [13] PENG X, WANG Z. Ultrasensitive determination of selenium and arsenic by modified helium atmospheric pressure glow discharge optical emission spectrometry coupled with hydride generation[J]. Analytical Chemistry, 2019 (91): 10073-10080.

  [14] LI M, LI K, HE L, et al. Point discharge microplasma optical emission spectrometer: Hollow electrode for efficient volatile hydride/mercury sample introduction and 3D-printing for compact instrumentation[J]. Anal. Chem., 2019 (91): 7001-7006.

  [15] HUANG K, XU K L, HOU X D, et al. UV-induced atomization of gaseous mercury hydrides for atomic fluorescence spectrometric detection of inorganic and organic mercury after high performance liquid chromatographic separation[J]. Journal of Analytical Atomic Spectrometry, 2013(28): 510-515.

  [16] LUO H, HOU X D, LONG Z. Miniaturized corona discharge-atomic emission spectrometer for determination of trace mercury[J]. Chinese Journal of Analytical Chemistry, 2015(43): 1291-1295.

  [17] LONG Z, XIN J, HOU X. Determination of arsenic and mercury in Chinese medicinal herbs by atomic fluorescence spectrometry with closed‐vessel microwave digestion [J]. Spectroscopy Letters, 2004 (37): 263-274.

  [18] WANG Z H, WANG S J, HUANG Y L. Determination of arsenium and lead in traditional Chinese medicines by graphite furnace atomic absorption spectrometry[J]. Spectrosc. Spectral Ana, 2001(21): 854-858.

  [19] ZHANG W B, GAN W E, LIN X Q. Electrochemical hydride generation atomic fluorescence spectrometry for the simultaneous determination of arsenic and antimony in Chinese medicine samples[J]. Analytica Chimica Acta, 2005(539): 335-340.

  [20] ALZAHRANI H R, KUMAKLI H, AMPIAH E, et al. Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values[J]. Arabian Journal of Chemistry, 2017(10): 906-913.

  [21] LI K L, LUO J Y, DING T, et al. Multielements determination and metal transfer investigation in herb medicine Bupleuri Radix by inductively coupled plasma-mass spectrometry[J]. Food Science & Nutrition, 2018(6):2005-2014.

杨海燕 余秋月 廖静 黄科 四川师范大学化学与材料科学学院


本网版权声明:
凡本刊本网发布的所有文字作品,版权均属于《中国现代教育装备》杂志(www.zgxdjyzb.com),未经本刊本网授权不得转载、摘编、伪原创或利用其它方式使用。违者本刊本网将追究相关法律责任。
凡本刊本网发布的照片、视频,属本刊本网原创或已获作者本人授权。未经授权,擅自使用者,本刊本网及相关权益人将追究其相关法律责任。
关于我们 | 期刊导读 | 顾问专家 | 法律声明 | 广告业务

Copyright(C) 《中国现代教育装备》杂志社有限责任公司 版权所有 
地址:北京市海淀区学院路35号世宁大厦一层108室(100191)
高教邮箱:cn11_4994@263.net
基教邮箱:cn11_4994@163.com
电话:010-82098610

中国现代教育装备微信公众号二维码